Hopf maps as static solutions of the complex eikonal equation

نویسنده

  • C. Adam
چکیده

We demonstrate that a class of torus-shaped Hopf maps with arbitrary linking number obeys the static complex eikonal equation. Further , we explore the geometric structure behind these solutions, explaining thereby the reason for their existence. As this equation shows up as an integrability condition in certain non-linear field theories, the existence of such solutions is of some interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knotted Configurations with Arbitrary Hopf Index from the Eikonal Equation

The complex eikonal equation in (3+1) dimensions is investigated. It is shown that this equation generates many multi-knot configurations with an arbitrary value of the Hopf index. In general, these eikonal knots do not have the toroidal symmetry. For example, a solution with topology of the trefoil knot is found. Moreover, we show that the eikonal knots provide an analytical framework in which...

متن کامل

Knotted Multi-Soliton Configurations with Arbitrary Hopf Index from the Eikonal Equation

The complex eikonal equation in (3+1) dimensions is investigated. It is shown that this equation generates many multi soliton configurations with arbitrary value of the Hopf index. In general, these eikonal hopfions do not have the toroidal symmetry. For example, a hopfion with topology of the trefoil knot is found. Moreover, we argue that such solitons might be helpful in construction of appro...

متن کامل

Generalized Eikonal Knots and New Integrable Dynamical Systems

A new class of non-linear O(3) models is introduced. It is shown that these systems lead to integrable submodels if an additional integrability condition (so called the generalized eikonal equation) is imposed. In the case of particular members of the family of the models the exact solutions describing toroidal solitons with a non-trivial value of the Hopf index are obtained. Moreover, the gene...

متن کامل

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

Knots, Braids and Hedgehogs from the Eikonal Equation

The complex eikonal equation in the three space dimensions is considered. We show that apart from the recently found torus knots this equation can also generate other topological configurations with a non-trivial value of the π2(S 2) index: braided open strings as well as hedgehogs. In particular, cylindric strings i.e. string solutions located on a cylinder with a constant radius are found. Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003